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A simple integration method is presented that mitigates inherent instabilities in certain 
ordinary differential equations. These instabilities occur for initial value problems or for 
problems of infinite range where initial value methods are required. Our technique uses a 
modified initial value method that employes a restart scheme. The restart values for the 
dependent variables are found by the Newton-Raphson technique. The method is applied 
to the “tearing mode” equations of resistive magnetohydrodynamics. Accuracy to six 
places is achieved. 

INTRODUCTION 

The purpose of this paper is to describe a simple method of mitigating the effect of 
undesired exponentially dominant solutions occurring in the numerical integration of 
certain ordinary differential equations. This method is particularly appropriate for 
integration over infinite ranges and may be used in conjunction with conventional 
integration method such as Runge-Kutta. 

In particular, we consider the integration of the differential equation 

y” - x”y = f(x) 

over the range - a < x < co. Here we consider f(x) to be of bounded variation 
for finite x. This equation occurs in the study of the “tearing instability” in resistive, 
nonideal magnetohydrodynamics [I]. 

We look for bounded solutions of Eq. (I), for all X, subject to a specification of y(0). 
This boundedness condition may not be applied a priori in a numerical integration 
scheme. Instead, an initial value method may be used that specifies y(O) and y’(O). 
These initial values are then adjusted so that solutions are bounded for large j x j. 
That this method is ill-posed may be seen by noting that the homogeneous solution 
to Eq. (I) is 

y(x) = A x~‘~K,,,(x~/~) + B x~/~I,,,(x~/~). 

Here Kl14(z) and &(z) are modified Bessel functions. The first term in Eq. (2) may be 
eliminated in numerical integration by the condition, y(O) = 0. However, the second 
term is ever present and is proportional to exp(xz/2)/x1/2 for large x. 
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A shooting method may be used to suppress this undesired solution, but one must 
make / B 1 < IO-l6 to obtain three-place accuracy for 1 x 1 < 5. Minimization of j B 1 
has been achieved to this extent by adjusting the initial values, y(O) and y’(O) [2]. 
Such a procedure is limited by the machine accuracy and the absolute minimum 
expected may be given approximately by mini B 1 - IO-l, where 1 is the number of 
digits of precision of the computer. From Eq. (2) it is clear that the absolute error 
from the integration due to the undesired exponential term is of the order / B 1 
exp(x2/2)/x1/2. If a prescribed accuracy of m digits is given, the range of .Y is corre- 
spondingly limited by an upper bound X, where X is determined from 

1 B ( . (eX”/2)/X1/2 ‘v y(X) . lo-“‘. 

Certain backward integration methods [3] require precise knowledge of the depen- 
dent variable for large x. Small errors in the starting values grow rapidly and produce 
grossly inaccurate solutions for small x. 

It has been suggested that such difficulties that arise from inherent instabilities 
may be overcome by means of the “partial Wronskian” method [4]. However, we 
have found that this technique inevitably fails because of accumulated errors and 
errors due to curve-fitting procedures. 

We have been able to suppress these effects and achieve greater accuracy over an 
extended range by a modification of the initial value process. We simply select a 
value x1 > 0 such that 1 B 1 exp(xr2/2)/l x1 / v is smaller than the desired accuracy 
and restart the integration at x = x1 . We then minimize / B 1 as function of y(xl) 
and $(x1) by the Newton-Raphson method. Solutions with uniform six-place accuracy 
may be obtained for all x by appending as asymptotic solutions for j x I > 10. 

As an application, we apply the procedure to a sequence of problems of the form of 
Eq. (1) where the right-hand side is given by the solution to the previous problem. 
This application arises in the study of diffusive effects in tearing modes [5]. Details 
of the procedure and the application are given in the next section. 

MODIFIED INITIAL VALUE SCHEME 

A. Method Outline 

We begin our integration of Eq. (1) with the usual initial value technique. We set 
y(O) = 0 and arbitrarily select y’(O) < 0. This latter choice is motivated by the 
asymptotic form of the solution, which may be determined directly from the differen- 
tial equation. Eventually, the integration is swamped by the undesired exponential 
solution and j B / may be computed by curve fitting. The value of / B I clearly depends 
upon y’(O). Subsequent modification of y’(O), 6y’(O), is made by means of Newton’s 
method to minimize 1 B 1, i.e., 

W(O) = - I B l/P I B llW(W. (3) 
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This technique yields a solution of prescribed accuracy for a truncated range 0 < 
/ x / < xl (see Fig. 1, curve A), 

To extend the range beyond x1 , we restart the integration of Eq. (1) at x1 and 
adjust y&) and y’(x,) to minimize I B ( by the “gradient method” [6]. Since the 
bounded solution of Eq. (1) is unique and corresponds to j B / = 0, we may visualize 
nested nontrivial j B j curves, as shown in Fig. 2, as functions of y(x& and y’(xJ. In 
order to find the minimum j B 1 first we expand ) B / at point 1 (where / B ( = 0) as a 
Taylor series about point 2, so that 

a I B In+1 I B In + ~Yiz+dXd @qxl) + sYn+l(xl> y$+l = 0. 
1 

(4) 

FIG. 1. Application of the modified initial value method. The figure shows extension of the 
numerical range by three applications of this restart technique (curves A, B, and C) and continuation 
to an asymptotic solution (curve D). 

The proper values of 6y(x,) and 6y’(x,) are approximated by projecting a normal 
from point 2, as seen in Fig. 2. Since the equation for the normal is given by 

alBl ~Y,Cl(Xl) ajy;$ - SYh+*(X,) ay(x”;l = 03 
1 

SYn+1 and 6yk+, are obtained from Eqs. (4) and (5). Convergence is assured if the 
neighborhood of point 1 is sufficiently small. 

The whole process, therefore, consists of five steps. First we obtain a solution to the 
desired accuracy by using Newton’s method for the range 0 < x < x1 . Second we 
successively vary y(xJ and y’(xJ slightly and obtain new values of 1 B 1 by integrating 
beyond x = x, . Next we can compute gradients of ) B ( with respect to y(xI) and 
y’(xI). We use these gradients to compute ~Y,+~(x& and 6y~+,(x,) from Eqs. (4) and (5) 
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and, hence, new restart values in the fourth step. Finally, in step 5, integration of 
Eq. (1) is continued with the new restart values 

Yn+2cd = Yn+d&) + &3+1(x1) 

and 

34+2(x1) = Yn+dXJ + ~Yn+l(xl)~ 

By looping through steps 2-5, I B I is minimized to a prescribed degree and we obtain 
the desired accuracy for the range x1 < 1 x 1 < x2 (see Fig. 1, curve B). 

IBI = CONSTANT / 

FIG. 2. Gradient method. Nested constant I B I curves are shown as functions of restart values 
y(q) and y/(x1). Note that 1 B 1 = 0 at point 1. Approximate minimizations at point 3 are found by 
normal projections from point 2. 

Because the starting point has been moved from the origin to x, , the expected 
absolute minimum ( B ( is given approximately by (min [ B [) exp[(x12/2)/( x, ]1/2] N 
10-l. For x1 = 5, min ) B ) may be reduced by five orders of magnitude. Usually, three 
to four orders of magnitude improvement can be achieved easily. Clearly the method 
may be repeated at larger x values as many times as necessary (Fig. 1, curve C). The 
restarting procedure may be automated or may be interactive. When an accurate 
solution is obtained at sufficiently large x, a uniform solution may be obtained for all 
1 x 1 > 10 by appending an asymptotic solution (Fig. 1, curve D). 
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B. Application of Restart Scheme 

A demonstration of the absolute accuracy attainable may be seen by integration of 
Eq. (1) when f(x) = 0. Then the desired solution is 

y(x) = x1’2K,,,(x2/2) 

q.rlP x 

( 1 

Q 
= -- 

2 I r(3/4) 0 
dt sinh1j2 t exp - f cash t). ( (6) 

The modified initial value scheme was run interactively in this case and the results are 
compared in Table I with those obtained from Eq. (6). Absolute accuracy of lo-l5 is 
noted. Such accuracy using direct inversion matrix methods is not possible. 

TABLE I 

Absolute Accuracy. Results from Eq. (6), the Initial Value, and the Modified Initial Value Methods 
are Compared 

x Es. (6) Uncorrected5 Corrected” 

9.603E - 01 

1.632E - 01 

1.116E - 02 

2.94OE - 04 

2.933E - 06 

1.097E - 08 

1.528E - 11 

7.913E - 15 

9.603E - 01 

1.632E - 01 

1.114E - 01 

- 1.572E - 05 

-2.482E - 02 

-5.531E + 00 

-3.401 E + 03 

-5.746E + 06 

9.603E - 01 

1.632E - 01 

1.116E - 02 

2.94OE - 04 

2.933.F - 06 

1.097E - 08 

1.529E - 11 

7.977E - 15 

= 1 B ] = 2.056E - 07. 
* j B 1 = 1.675E - 30. 

Six-place accuracy is obtainable for the tearing mode application, where we take 

f(x) = x. (7) 

We look for bounded solutions with y(O) = 0 and y’(O) # 0. For this choice off(x), 
the solution may be expressed as a quadrature [7], 

y(x) = - -$ &‘2 de sinl12 8 exp (- g cos 0). 

The solution, Eq. (8), may be verified directly by substitution and integration by 
parts. We may use Eq. (8) to check the accuracy of our modified initial value technique. 
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A uniformly accurate solution is obtained for all x by appending an asymptotic 
solution for j x [ > 10. We find directly from Eqs. (1) and (7) that 

1 2 60 y------y 
.Y x” ->+ *... 

The results are shown in Table II, where the initial value method is compared to 
Eq. (8). Six-place accuracy is noted. 

TABLE II 

The Values of y Computed from Eq. (8) and the Modified Initial Value Method; (MIVM) 

X Eq. (8) MIVM 

0 O.OOOOOOE + 00 0.0000000 c 00 

1 -0.458771 E + 00 -0.4587710 + 00 

2 -0.471784E + 00 -0.4717840 COO 

3 -0.339902E + 00 --0.3399030 + 00 

4 -0.252187E + 00 -0.2521870 + 00 

5 -0.200676E + 00 -0.2006760 + 00 

6 -0.166930E + 00 -0.1669300 + 00 

7 -0.142978E + 00 -0.1429780 + 00 

8 -0.125062E + 00 -0.1250620 + 00 

9 -0.111145E + 00 -0.111145D + 00 

10 -0.100020E + 00 -0.1000200 + 00 

11 -0.909216E- 01 -0.9092150 - 01 

12 -0.8334146 - 01 -0.8334140 - 01 

13 -0.769285E - 01 -0.7692850 - 01 

14 -0.714323E - 01 -0.7143230 - 01 

15 -0.666694E- 01 -0.6666940 -01 

Another application, where this accuracy is required, arises from the study of the 
effects of diffusion on the tearing mode [5]. In this circumstance, it is found that the 
displacement resistive layer for the case of a resistive sheet pinch satisfies the equation 

cy” + y” - x”y = x - c. (10) 

Here c is proportional to the diffusion velocity. Since the parameter c is a coefficient 
of the highest derivative, Eq. (10) represents a singular perturbation problem, even 
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for small c. Nevertheless, Eq. (1) may be solved for bounded solutions by expanding y 
in powers of c and solving the resulting hierarchy 

h; - x”h, = x, 

h; - x2h, = -h; - 1, 
m 

h; - .P’h, = 4, 

in succession. Here we have written 

y = h, + ch, + c2h, + . . . . 

FIG. 3. hi versus x for i = 1, 2, 3. 

Asymptotic expressions for h, and h, are inferred from that for h, so that 

h --$+$+gf+yp+ . . . . 

and 

h2w-$ 5,376 
Xl1 

1,929,312 .., . 
Xl5 

+ 

(11) 

02) 

(13) 

Cubic splines are used to obtain values of the right-hand side of Eq. (11) necessary in 
the differential equation algorithm. The results for h, , h, , and h, are shown in Fig. 3 
forO<x<15. 
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CONCLUSION 

The correction procedure described here is more or less independent of the accumu- 
lated errors in the previous step. In principle, one can find the exact solution by 
starting the integration at any x. Therefore, the advantage of having an approximate 
solution at, say, x1 , is to narrow the parameter search area for min ( B I. The better the 
solution, the smaller the parameter space needed to be searched. This particular 
property makes the procedure much more attractive and gives much more accurate 
answers than other methods. For example, the partial Wronskian method often fails 
completely due to accumulated errors and errors arising due to curve-fitting procedure. 
A consequence of this self-correcting property is that the integration is not required 
to have extreme accuracy at the beginning of the integration in order to obtain 
certain predetermined accuracy at the end point. Therefore, more uniformed accuracy 
can be obtained over a larger integration range. 
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